Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050655

RESUMO

BACKGROUND: One of the most critical topics in sports safety today is the reduction in injury risks through controlled fatigue using non-invasive athlete monitoring. Due to the risk of injuries, it is prohibited to use accelerometer-based smart trackers, activity measurement bracelets, and smart watches for recording health parameters during performance sports activities. This study analyzes the synergy feasibility of medical radar sensors and tri-axial acceleration sensor data to predict physical activity key performance indexes in performance sports by using machine learning (ML). The novelty of this method is that it uses a 24 GHz Doppler radar sensor to detect vital signs such as the heartbeat and breathing without touching the person and to predict the intensity of physical activity, combined with the acceleration data from 3D accelerometers. METHODS: This study is based on the data collected from professional athletes and freely available datasets created for research purposes. A combination of sensor data management was used: a medical radar sensor with no-contact remote sensing to measure the heart rate (HR) and 3D acceleration to measure the velocity of the activity. Various advanced ML methods and models were employed on the top of sensors to analyze the vital parameters and predict the health activity key performance indexes. three-axial acceleration, heart rate data, age, as well as activity level variances. RESULTS: The ML models recognized the physical activity intensity and estimated the energy expenditure on a realistic level. Leave-one-out (LOO) cross-validation (CV), as well as out-of-sample testing (OST) methods, have been used to evaluate the level of accuracy in activity intensity prediction. The energy expenditure prediction with three-axial accelerometer sensors by using linear regression provided 97-99% accuracy on selected sports (cycling, running, and soccer). The ML-based RPE results using medical radar sensors on a time-series heart rate (HR) dataset varied between 90 and 96% accuracy. The expected level of accuracy was examined with different models. The average accuracy for all the models (RPE and METs) and setups was higher than 90%. CONCLUSIONS: The ML models that classify the rating of the perceived exertion and the metabolic equivalent of tasks perform consistently.


Assuntos
Radar , Corrida , Humanos , Exercício Físico/fisiologia , Aprendizado de Máquina , Acelerometria/métodos
2.
Genetics ; 216(4): 1205-1215, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067324

RESUMO

Allele frequencies vary across populations and loci, even in the presence of migration. While most differences may be due to genetic drift, divergent selection will further increase differentiation at some loci. Identifying those is key in studying local adaptation, but remains statistically challenging. A particularly elegant way to describe allele frequency differences among populations connected by migration is the F-model, which measures differences in allele frequencies by population specific FST coefficients. This model readily accounts for multiple evolutionary forces by partitioning FST coefficients into locus- and population-specific components reflecting selection and drift, respectively. Here we present an extension of this model to linked loci by means of a hidden Markov model (HMM), which characterizes the effect of selection on linked markers through correlations in the locus specific component along the genome. Using extensive simulations, we show that the statistical power of our method is up to twofold higher than that of previous implementations that assume sites to be independent. We finally evidence selection in the human genome by applying our method to data from the Human Genome Diversity Project (HGDP).


Assuntos
Frequência do Gene , Ligação Genética , Modelos Genéticos , Seleção Genética , Evolução Molecular , Loci Gênicos , Genética Populacional/métodos , Genoma Humano , Genômica/métodos , Migração Humana , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA